Factorisation Algebraic Expressions

To factorise means to find the factors that made up a product, say 4 and 5 are the factors of 20 as they produce 20 when multiplied. So as 20 and 1 are other factors of 20, as well as 10 and 2.

Similarly, in the previous section, if 4(2x + 1) = 8x + 4, we multiplied 4 and (2x + 1) to produce the algebraic expression 8x + 4. Hence, 4 and (2x + 1) are called factors of (8x + 4).

To factorise the expression (14m - 21) means to find two expressions that will give such expression. If we think about it, a number must have been multiplied to an expression that resulted to 14m - 21. The HCF of 14 and 21 is 7, hence, is this number. So, 7(2m - 3) is the factorised form of 14m - 21.

The process of writing an algebraic expression as a product of two or more other algebraic expressions is called **factorisation**.

EXAMPLE 1:

Factorise the following:

(a)
$$9x + 24$$

(b)
$$2m - 4n + 10p$$

(c)
$$bx + by - bz$$

Solution:

(a)
$$9x + 24$$

$$3 \times 3x + 3 \times 8$$

$$3(3x + 8)$$

(b)
$$2m - 4n + 10p$$

$$2 \times m - 2 \times 2n + 2 \times 5p$$

$$2(m-2n+5p)$$

(c)
$$bx + by - bz$$

$$\boldsymbol{b} \times x + \boldsymbol{b} \times y - \boldsymbol{b} \times z$$

$$b(x+y-z)$$

(d)
$$6ab + 18ac$$

(e)
$$-4x^2 + 36x$$

(f)
$$25x^2y - 5xy$$

Solution:

(d)
$$6ab + 18ac$$

(e)
$$-4x^2 + 36x$$

(f)
$$25x^2y - 5xy$$

$$6a \times b + 6a \times 3c$$

$$a \times b + 6a \times 3c$$

$$-4x \times x + -4x \times -9$$

$$5xy \times 5x - 5xy \times 1$$

$$6a(b + 3c)$$

$$-4x(x-9)$$

$$5xy(5x-1)$$

Some algebraic expressions contain factors in the form of a group of terms.

Say, factorise the expression x(x+1) + y(x+1).

As can be observed, the group (x + 1) must have been multiplied to another expression resulting the given expression. By "factoring out the common group", it turns out that the second expression is x + y.

Hence,
$$x(x + 1) + y(x + 1) = (x + 1)(x + y)$$

EXAMPLE 2:

Factorise:

(a)
$$k(5m+2)+3(5m+2)$$

(b)
$$4a(x-y) - 3b(x-y)$$

Solution:

(a)
$$k(5m+2) + 3(5m+2)$$

$$(5m + 2) \times k + (5m + 2) \times 3$$

$$(5m+2)(k+3)$$

(b)
$$4a(x-y) - 3b(x-y)$$

$$(x-y) \times 4a - (x-y) \times 3b$$

$$(x-y)(4a-3b)$$

PRACTICE:

1. Factorise the following fully:

(a)
$$4a + 16$$

(b)
$$8k - 64$$

(c)
$$-10p + 45q$$

(d)
$$27 - 63w$$

(e)
$$20dx + 60dy - 30dz$$

(f)
$$6a - 30am + 12an$$

(g)
$$3xyz - 15wxyz$$

(h)
$$-4m + 8n - 12p$$

(i)
$$-60r^2st^3 - 30rs^2t^2 - 40rs^3t$$

(j)
$$2ax + 3ay - 5yz$$

2. Factorise the following fully:

(a)
$$4(a+1) + x(a+1)$$

(b)
$$5m(k-2)-3(k-2)$$

(c)
$$6x(a+b-c)-y(a+b-c)$$

(d)
$$-2w(1-b)+5(1-b)$$

(e)
$$20h(x+3y)-(x+3y)$$

(f)
$$(4+z)-x(4+z)$$

(g)
$$3xy(2-z) - 15x(2-z)$$

(h)
$$5x(a+4b) + 10y(a+4b)$$

(i)
$$(x+y)(a+4b) + (2x+y)(a+4b)$$

(i)
$$(6x-1)(a+4b-3c)-7y(a+4b-3c)$$